Computing the linear complexity for sequences with characteristic polynomial f v
نویسندگان
چکیده
منابع مشابه
Linear Complexity for Sequences with Characteristic Polynomial f v Alex
We present several generalisations of the GamesChan algorithm. For a fixed monic irreducible polynomial f we consider the sequences s that have as characteristic polynomial a power of f . We propose an algorithm for computing the linear complexity of s given a full (not necessarily minimal) period of s. We give versions of the algorithm for fields of characteristic 2 and for arbitrary finite ch...
متن کاملInstitutional Repository Linear complexity for sequences with characteristic polynomial fv
We present several generalisations of the GamesChan algorithm. For a fixed monic irreducible polynomial f we consider the sequences s that have as characteristic polynomial a power of f . We propose an algorithm for computing the linear complexity of s given a full (not necessarily minimal) period of s. We give versions of the algorithm for fields of characteristic 2 and for arbitrary finite ch...
متن کاملComputing the Characteristic Polynomial of Threshold Graphs
We present an algorithm for constructing the characteristic polynomial of a threshold graph’s adjacency matrix. The algorithm is based on a diagonalization procedure that is easy to describe. It can be implemented using O(n) space and with running time O(n). Submitted: December 2013 Reviewed: October 2014 Revised: November 2014 Accepted: December 2014 Final: December 2014 Published: December 20...
متن کاملLinear complexity of binary sequences derived from polynomial quotients
We determine the linear complexity of p-periodic binary threshold sequences derived from polynomial quotient, which is defined by the function (u−u)/p (mod p). When w = (p−1)/2 and 2p−1 6≡ 1 (mod p), we show that the linear complexity is equal to one of the following values { p − 1, p − p, (p + p)/2 + 1, (p − p)/2 } , depending whether p ≡ 1, −1, 3, −3 (mod 8). But it seems that the method can’...
متن کاملExtremal sequences of polynomial complexity
The joint spectral radius of a bounded set of d × d real matrices is defined to be the maximum possible exponential growth rate of products of matrices drawn from that set. For a fixed set of matrices, a sequence of matrices drawn from that set is called extremal if the associated sequence of partial products achieves this maximal rate of growth. An influential conjecture of J. Lagarias and Y. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cryptography and Communications
سال: 2013
ISSN: 1936-2447,1936-2455
DOI: 10.1007/s12095-013-0080-3